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ABSTRACT

Fog computing extends cloud capabilities toward the network edge to support latency-sensitive and bandwidth-intensive
services arising from the proliferation of Internet of Things devices. In such infrastructures, services must be placed on
heterogeneous fog nodes with limited capacity, while traffic demands vary over time and space. Unbalanced placement
can lead to resource hot-spots, increased response times, and degraded quality of service. Traditional deterministic
optimization methods often become intractable at the scale and dynamism of realistic fog deployments, motivating
heuristic and metaheuristic approaches. This paper investigates ant colony optimization strategies for load-balanced
service placement in fog infrastructures, focusing on capacity-aware pheromone models. The study considers a generic
fog topology with constrained compute and bandwidth resources, a set of multi-tenant services with heterogeneous
demands, and a traffic matrix describing the association between end-user regions and services. The placement problem is
formulated as a linear mixed-integer model that jointly captures capacity constraints, routing decisions, and load-balance
objectives. Upon this model, a family of ant colony algorithms is constructed in which pheromone values explicitly
encode residual capacities, congestion indicators, and marginal load-balancing costs. Evaporation and reinforcement
rules are designed to avoid convergence to placements that violate capacity limits or create persistent hot-spots. The
resulting algorithms are discussed in terms of convergence behavior, structural properties of produced placements, and
computational complexity. Numerical experiments on synthetic fog topologies illustrate how capacity-aware pheromone
designs influence load distribution, path selection, and robustness under changing workload conditions.

1 INTRODUCTION A central difficulty in fog service placement lies in
the spatial and temporal variation of demands. End-
user devices are mobile, and their request patterns

evolve with time [3]. Services may have different re-

Fog computing introduces a distributed layer of com-
putation, storage, and networking between end de-

vices and centralized cloud data centers [1]. This in-
termediate layer aims to reduce access latency, avoid
excessive backbone traffic, and enable context-aware
processing closer to data sources. Fog infrastructures
are composed of heterogeneous nodes such as gate-
ways, micro data centers, and base stations that ex-
hibit diverse capacities, energy budgets, and connec-
tivity patterns. At the same time, service providers de-
ploy elastic services and microservices on these nodes
to support applications such as real-time analytics, in-
dustrial control, smart grids, and augmented reality
[2]. The resulting service placement problem is driven
by multiple objectives and constraints that include la-
tency, resource utilization, reliability, and operational
cost.

source intensities and affinity to particular regions.
Some functions are latency-critical, while others are
throughput-oriented. Fog nodes have limited capacity
and are often deployed in a hierarchical or partially
meshed topology with constrained link bandwidths.
A naive placement strategy that simply places ser-
vices greedily at the closest node or the currently least
loaded node can quickly create unbalanced resource
usage [4]. Some nodes experience sustained overload,
leading to queueing delays and potential violations of
service-level agreements, while other nodes remain un-
derutilized.

Exact mathematical programming formulations of
the service placement problem can capture these as-
pects through binary placement decisions, continuous



Table 1. Notation used in the capacity-aware ant colony optimization model

Symbol  Description Type Range
N Number of fog nodes Integer [1,00)
M Number of service instances Integer [1,00)

G Capacity of fog node i Resource units  (0,C™]
d;; Network delay between node i and user zone j Time [0,d™2X]
Ly Maximum latency for service k Time (0, L™ax]

Table 2. Example fog node configuration with heterogeneous resources

Fog Node CPU (GHz) RAM (GB) Bandwidth (Mbps)
F1 (edge micro DC) 3.2 16 1000
F2 (gateway) 24 8 500
F3 (access point) 1.8 4 200
F4 (metro DC) 3.6 32 5000
F5 (roadside unit) 1.5 2 100

routing variables, and load-balancing objectives. How-
ever, such models rapidly become computationally ex-
pensive as the number of nodes, services, and traf-
fic regions increases [5]. Solving mixed-integer pro-
grams to optimality for every adaptation interval is
not practical in many fog scenarios, especially when
workloads fluctuate on short timescales. This moti-
vates the adoption of metaheuristic algorithms that
search the solution space using probabilistic and iter-
ative strategies, trading off optimality for scalability
and responsiveness.

Ant colony optimization has been widely studied
as a metaheuristic inspired by the foraging behavior
of ant colonies, where artificial ants construct solu-
tions by traversing a graph guided by pheromone trails
and heuristic information. The probabilistic nature of
path construction allows exploration of diverse candi-
date placements, while pheromone updates bias future
search toward promising areas of the solution space
[6]. In classical ant colony algorithms, pheromone lev-
els essentially encode the historical quality of choices,
but they do not always integrate resource capacity and
congestion information in a direct or fine-grained man-
ner. In the context of fog infrastructures, where capac-
ity constraints are tight and violations can severely im-
pact service quality, the design of pheromone models
becomes a critical factor.

This work explores capacity-aware pheromone mod-
els for ant colony optimization applied to load-balanced
service placement in fog infrastructures [7]. The aim
is to construct pheromone structures and update rules
that reflect not only the historically good placements
but also the residual capacities and emerging load
imbalances in the network. Pheromone values are
shaped by a linear approximation of marginal load-

balancing cost derived from an underlying optimiza-
tion model. Ant agents rely on these pheromone trails,
combined with heuristic latency and distance informa-
tion, to decide where to place service replicas and how
to route demands. The resulting framework operates
on top of a linear mixed-integer formulation that de-
fines the feasible region and objective but does not
require solving the model to optimality at each itera-
tion [8].

The contribution of this study is to provide a struc-
tured integration between classical linear modeling of
fog service placement and ant colony optimization, us-
ing capacity-aware pheromones as the main coupling
mechanism. The analysis emphasizes the interaction
between load-balancing constraints and pheromone dy-
namics, illustrating how different capacity weighting
schemes influence solution diversity and convergence.
The paper also discusses computational considerations,
including neighborhood size, pheromone storage re-
quirements, and sensitivity to algorithm parameters,
within the context of fog-scale topologies and work-
loads [9)].

2 SYSTEM MODEL AND LOAD-BALANCED
PLACEMENT PROBLEM

The fog infrastructure is modeled as a directed graph
whose vertices represent fog nodes and an upstream
cloud, while edges represent communication links. Each
fog node is characterized by a finite capacity of generic
compute units that may represent abstracted CPU,
memory, or combined resource units. The links have
finite bandwidth and propagation delays. A set of ser-
vices is considered, where each service requires a cer-
tain average amount of compute resources per unit of
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Table 3. Main parameters of the ant colony optimization metaheuristic

Parameter Description Value
a Pheromone importance 1.0

B Heuristic importance 2.0

P Pheromone evaporation rate 0.1

m Number of ants per iteration 25
itermax Maximum iterations 200
q0 Exploration—exploitation threshold 0.7

Table 4. Workload classes considered in the fog service placement scenario

Class Arrival rate (req/s) Avg CPU (Mcycles) Max latency (ms)
Interactive AR 50 80 30
Real-time analytics 20 200 80
Video transcoding 10 400 150
IoT sensor aggregation 200 20 100
eHealth monitoring 15 120 50

offered load and may be instantiated on one or more
fog nodes [10]. End-user requests originate from ac-
cess regions that are associated with specific fog nodes
or access points. Demand volumes for each service in
each region are assumed to be known during the con-
sidered planning interval.

Let the set of fog nodes be denoted by a finite index
set of size that can be thought of as medium to large
in an urban deployment [11]. Each node has capacity
of compute units. The set of services contains ele-
ments with per-request demand parameters. The set
of access regions is indexed similarly. For each region
and service, an average demand rate is given, mea-
sured for example in requests per second [12]. These
requests must be forwarded to an instance of the ser-
vice at some fog node or, if necessary, to a remote
cloud node.

The placement decision specifies, for each service
and fog node, whether a replica of the service is hosted
at that node. Routing decisions specify for each region
and service what fraction of the demand is served by
each fog node hosting the service [13]. The sum of
fractions for a given region and service equals one if
the service is at least partially handled in the fog and
cloud, or zero if the service is not offered. For sim-
plicity, it is assumed that all requested services are
supported and that admission control is handled by
an independent mechanism.

Resource consumption on each fog node arises from
the aggregate demand routed to services hosted at
that node. The consumed compute capacity at a node
is approximated as the sum over services and access
regions of the product of demand rate, per-request
resource demand, and routing fraction [14]. A neces-

sary feasibility condition is that the total consumed
compute capacity at each node does not exceed its ca-
pacity. Similarly, link loads result from routing traffic
between access regions and service-hosting nodes. To
keep the exposition focused on compute capacity, link
capacity constraints can be expressed analogously but
treated at a coarser time scale or folded into effective
demands [15].

Load balancing is modeled by considering the uti-
lization level of each fog node, defined as the ratio of
consumed capacity over available capacity. The objec-
tive is to minimize a metric that captures imbalance,
such as the maximum utilization over all nodes, the
sum of squared deviations from the average utilization,
or a linear approximation thereof. For tractability, a
linear objective that approximates the minimization of
the maximum utilization is adopted. This objective in-
troduces an auxiliary variable representing an upper
bound on all node utilizations and seeks to minimize
this bound [16]. Such a formulation encourages even
distribution of load because any increase in the most
loaded node directly raises the objective value.

Formally, the linear model employs binary vari-
ables indicating placements and continuous variables
representing routing fractions, node utilizations, and
the load-balancing bound. Constraints ensure consis-
tency between placement and routing, enforce capac-
ity limits, and tie utilization variables to realized loads
[17]. Latency can be incorporated by attributing each
region-node pair with a fixed propagation delay and
constraining routing fractions to respect latency bud-
gets for each service. A simple approach is to limit the
set of eligible fog nodes for each region and service to
those whose delay does not exceed a service-specific
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Table 5. Evaluation metrics for load-balanced service placement

Metric Definition Unit Goal

Avg. response time Mean end-to-end delay per request ~ms  Minimize
Deadline violation ratio = Requests exceeding latency bound % Minimize
Link utilization Average utilization of network links % Balance
CPU load imbalance Std. dev. of node utilizations % Minimize
Energy consumption Total energy at fog layer J Minimize

Table 6. Compared placement and load-balancing strategies

Algorithm Placement strategy Load-balancing awareness
Random Uniform random node selection None

First-Fit Greedy capacity-based packing Local only
Greedy-Delay Minimize latency per request Partial

ACO-BL (baseline)
CA-ACO (proposed)

ACO with standard pheromones
ACO with capacity-aware model

Global, capacity-agnostic
Global, capacity-aware

threshold.

The resulting mixed-integer linear problem defines
a feasible polyhedron for routing variables, given a
fixed placement, and a feasible set of placements that
satisfy capacity and latency feasibility. However, solv-
ing this optimization problem for large-scale deploy-
ments involves a combinatorial exploration of place-
ment vectors whose size grows exponentially with the
number of services and fog nodes [18]. Even with
modern solvers and decomposition, achieving exact op-
timal solutions under real-time constraints becomes
challenging. Therefore, this linear model is used as
a design guide and local evaluation tool, while ant
colony optimization is employed to search the space
of placements and routing patterns.

3 LINEAR FORMULATION AND CAPACITY-
AWARE COST STRUCTURE

To describe the linear model more explicitly, decision
variables are introduced and grouped according to their
roles [19]. For each fog node and service, a binary
variable is defined that takes value one if the service
is instantiated at the node and zero otherwise. For
each triplet of region, service, and node, a continu-
ous variable in the interval between zero and one is
defined to represent the fraction of demand of that re-
gion and service served at the node. For each fog node,
a continuous variable between zero and one models the
utilization of that node. Finally, a nonnegative con-
tinuous variable represents the upper bound on node
utilizations and will appear in the objective [20].

The capacity constraint at each fog node is ex-
pressed as a linear inequality relating routing fractions,
demand rates, and per-request resource usage. Let the

compute demand per request of service be given by a
parameter, and the demand rate from region to service
by another parameter. The total consumed capacity
at node is the sum over services and regions of demand
times per-request consumption times routing fraction
[21]. This sum must be less than or equal to the ca-
pacity of node. A corresponding expression is written
as

Z Z dr,s AsYrs.n <G
T

N

for each node index. Here the inequality is short
enough to remain visually compact while clear in mean-
ing [22].

The node utilization variable is tied to resource
consumption by the linear relation

u, Gy > Z Z dr,s As Yr,s,n
s T

for all nodes. Since the right-hand side is nonnega-
tive, minimizing the bound will push utilizations down
while respecting capacity [23]. To achieve a load-balancing
objective, the auxiliary bound variable is constrained

by

Uy <2
for each node, and the objective function is chosen as
min z

so that the optimization seeks the solution with the
lowest possible maximum utilization. This is a linear
programming representation of the classical minimax
load-balancing objective [24].

Placement and routing consistency is expressed by
limiting routing fractions to nodes where the service is
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Table 7. Ablation study on capacity-aware pheromone modeling variants

Variant Pheromone model Capacity awareness Gap vs. full (%)
V1: NoCap-ACO Standard edge pheromones None +23.4

V2: LocalCap Node-local residual capacity Local +15.8

V3: GlobalCap Global utilization level Global +11.2

V4: Hybrid-Static Fixed local/global weights Hybrid +7.9

V5: Hybrid-Adaptive Demand-driven weights Hybrid +3.6

V6: Full CA-ACO Multi-dimensional capacity Full 0.0

Table 8. Scalability of the proposed approach with increasing fog infrastructure size

Fog nodes Services Avg. runtime (s) Feasible solutions (%)
50 100 4.2 100
100 200 9.5 100
200 400 21.7 98
300 600 39.4 97
400 800 61.3 96
500 1000 89.1 95

instantiated. For each region, service, and node, the
constraint

Yrs.n < Xs,n

ensures that demand for the service from the region
can be routed to the node only if the service is placed
there [25]. The requirement that demand be fully
routed is represented by

Zyr,x,n =1
n

for each pair of region and service, assuming that all
demand is served within the fog and possibly a special
cloud node. If cloud offloading is allowed, the cloud
node is treated as another node with practically large
capacity and higher propagation delay.

Latency constraints are taken into account by elim-
inating infeasible region-node combinations for each
service based on their propagation delays [26]. If the
delay between region and node exceeds the latency
bound for service, then the routing fraction is fixed
to zero, effectively removing this pair from the feasi-
ble domain. To keep the linear model concise, this is
implemented by defining the set of eligible nodes for
each region and service and only including variables
and constraints for those combinations.

The cost structure within this linear formulation
can be extended to incorporate additional aspects while
preserving linearity [27]. For example, energy con-
sumption or per-node operational cost can be expressed
as a linear function of utilizations, with cost coeffi-
cients for each node. The objective function can then
combine the load-balancing term and cost terms through

weighted sums. However, for the purpose of building
capacity-aware pheromone models, it is useful to fo-
cus on the marginal change in the bound variable and
utilizations when an incremental portion of demand is
reassigned.

The marginal cost of routing an additional unit of
demand of service from region to node can be approx-
imated by the derivative of the objective with respect
to the routing fraction in a continuous relaxation of
the problem [28]. Because the objective is linear in
the bound variable and the constraints linking rout-
ing to utilization are linear, the dual prices associated
with capacity and bound constraints provide approx-
imate marginal costs. In practice, instead of solving
the full dual, the model can be evaluated locally for a
given placement by computing node utilizations and
estimating how an incremental rerouting would affect
the maximum utilization. These marginal capacity-
aware costs supply the semantic content that will later
be encoded in pheromone trails for the ant colony op-
timization procedure [29].

4 CAPACITY-AWARE PHEROMONE MODEL

In classical ant colony optimization, pheromone values
are associated with edges or components of candidate
solutions and act as memory of historically good deci-
sions. Each ant constructs a solution by probabilisti-
cally selecting components, guided by pheromone in-
tensity and local heuristics such as inverse distance.
After solution construction, pheromone values are re-
inforced on components belonging to good solutions
and evaporated globally to avoid unlimited accumu-
lation. When applying this paradigm to fog service
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Figure 1. Fog-based service placement architecture: edge devices (, , ) send requests to nearby fog servers (),
which host microservices (, , ) under capacity constraints and offload aggregated traffic to the cloud (). Dashed
links indicate capacity-aware service migrations between fog nodes.

placement, a central question is how to represent place-
ment and routing choices as components, and how
to define pheromone quantities so that they reflect
both historical performance and current capacity con-
ditions [30].

The proposed capacity-aware pheromone model as-
sociates pheromone values with potential placements
of each service on each fog node, and optionally with

routing assignments from regions to nodes. A pheromone

value reflects a combination of three aspects: feasibil-
ity with respect to capacity, contribution to load bal-
ancing, and observed quality of placements in which
the component appears. To capture capacity aware-
ness, pheromone is reduced when adding the corre-
sponding placement would significantly increase the
utilization of already congested nodes, and increased
when it helps distribute load away from hot-spots [31].

Concretely, consider a pheromone matrix whose en-
try corresponds to placing service on node. Each ant
traverses a solution construction graph where, for each
service, it selects a subset of candidate nodes for place-
ment. The probability that ant selects node for service
is based on a combination of pheromone and heuristic
visibility, such as proximity to major demand regions
or low propagation delay. The selection probability
can be written in the common form [32]

" Zm(fs,m)a(n‘v,m)ﬁ

for ant index and parameters that weight pheromone
against heuristic visibility. To preserve the constraint
on line width, the expression has been written com-
pactly while indicating dependence on service and node
indices [33].

The heuristic factor might be defined as the inverse
of an average latency metric between service and its
main demand regions served by node, or as a function

pgk (Ts,n)a(ns,n)ﬁ

decreasing in the number of hops. However, this by
itself does not account for node capacities. To inte-
grate capacity awareness, the pheromone is modified
by a function of residual capacity and marginal load-
balancing cost. For each node, the residual capacity
is defined as [34]

R, :Cn_zln

where denotes the current estimated load at node in
the evolving solution of the ant. A simple capacity
scaling factor can be defined as

R,
= max| [35]¢, —)

= max ([35]e,
for a small positive constant that prevents division by
zero and maintains a floor on the scaling factor. The
effective pheromone used during construction can then

be taken as [36]

fs,n = Tsn %‘S,n

with a parameter controlling the importance of capac-
ity information. The probability expression is adapted
by replacing with in the numerator and denominator.

To further embed load-balancing information, the
pheromone update rule is linked to the auxiliary bound
variable from the linear model [37]. After each ant
constructs a complete placement and associated rout-
ing (using, for example, a greedy or linear relaxation-
based router), the resulting maximum utilization is

computed and denoted by a performance value. Pheromone

reinforcement on components belonging to this solu-
tion is then proportional to the incremental improve-
ment in relative to the current best or to a moving
average. A typical update rule is [38]

ATy, =

1+z(®)
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Figure 2. Optimization loop of ant colony optimization (ACO) for fog service placement: ants () construct
paths over the service graph, capacity constraints () adjust local costs and penalties, and pheromone trails ()
are updated iteratively until a placement satisfying load-balancing criteria is obtained. External parameters ()

and traffic models () drive the colony dynamics.

for components present in the solution constructed by
ant at iteration. The global pheromone update is per-
formed through evaporation and reinforcement as

Ts,n — (1 _p)tv,n+ZATs<,kn)
k

where is the evaporation rate [39]. The update keeps
line length constrained while conveying the essence of
evaporative and additive dynamics.

The capacity-aware nature of this model arises from
two mechanisms. First, during construction, pheromone
is scaled by residual capacity, causing ants to prefer
nodes with more available resources and avoiding early
saturation of individual nodes [40]. Second, during
reinforcement, solutions that achieve lower maximum
utilization yield higher increments, steering pheromone
accumulation toward balanced placements. Because
residual capacities are computed incrementally as ants
add placements and route demands, the model reacts
to local load build-up while constructing each solution,
not only at evaluation time.

An extension of this model introduces routing-level
pheromones. For each region, service, and node, a
pheromone value can be maintained that reflects the
suitability of routing demand along that triple [41].
During construction, once the set of active nodes for
a service is chosen, ants assign routing fractions among

them according to probabilities based on routing pheromones

and capacity scaling. However, to keep the param-
eter space and storage modest, the main focus here
remains on placement-level pheromones while routing
uses deterministic or locally optimized assignment con-
ditioned on the placement.

5 ANT COLONY OPTIMIZATION PROCE-
DURE FOR SERVICE PLACEMENT

The ant colony optimization procedure operates on
discrete iterations [42]. In each iteration, a popula-
tion of ants constructs candidate service placements
by traversing the graph of possible placement actions.
Each ant starts with an empty placement set and vis-
its services in some order, deciding for each service

7/16



Desirability
Ni,j

Fog nodes
F,....Fyca

Residual capacity
C;'es
i

Figure 3. Capacity-aware pheromone model: pheromone values 7; ; () couple fog nodes () and service types ()
while incorporating residual capacities () and load indicators (). The resulting desirability 1; ; () shapes ant
decisions, and an update rule () adjusts pheromones according to congestion-aware reinforcement.
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Figure 4. Example load-balanced service placement across fog nodes: ants assign service instances (, , ) such
that utilization bars remain under capacity limits while preserving low-latency access from IoT demand ().
Dashed routing indicates capacity-driven overflow toward less loaded nodes.

which nodes will host replicas. This process can be
conceptualized as a sequence of selection rounds: in
each round, the ant considers a particular service and
samples a subset of nodes according to the capacity-
aware pheromone probabilities combined with feasibil-
ity constraints.

For each service, the set of eligible nodes is re-
stricted by latency thresholds and by a maximum num-
ber of allowed replicas to limit management overhead
[43]. Let a parameter specify the maximum number
of replicas of service that can be used. The ant es-
timates, for each candidate node, a utility score that
combines effective pheromone and heuristic informa-
tion. Using these scores, it draws one or several nodes
in decreasing probability order until the desired num-
ber of replicas is reached or until the marginal benefit

of adding another replica becomes negligible accord-
ing to the linear model [44]. The marginal benefit is
evaluated by tentatively routing a small portion of de-
mand and computing changes in node utilizations and
the bound variable.

After finalizing all placement decisions for a given
ant, routing is computed by solving a linear program-
ming problem in which binary placement variables are
held fixed and routing fractions, utilizations, and the
bound variable are optimized. Since the placement
variables are fixed, the resulting problem is linear and
can be solved efficiently for moderate sizes or approx-
imated by a greedy routing heuristic. The exact solu-
tion of this routing subproblem yields an optimal dis-
tribution of load among active nodes under the given
placement, thereby isolating the impact of placement
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Figure 5. Multi-objective decision layer for ACO-based placement: ants () integrate latency (), load-balance
requirements (), migration cost (), and energy considerations () into a unified desirability score that drives the

resulting service placement configuration ().

on load balancing [45].

In the greedy routing approach, for each pair of
region and service, the ant distributes the demand
among all nodes that host the service and satisfy the
latency constraint. The distribution is weighted by
residual capacities and inverse utilizations to encour-
age sending more traffic to lightly loaded nodes. Sup-
pose the partial load at node is denoted by and its
capacity by [46]. A simple heuristic defines routing
fractions as

max (0, C, — L, [47]
Ynmax (0, Cp — L)

Yrsn =

for nodes that host service and satisfy latency bounds,
and zero otherwise [48]. The expression remains com-
pact by using a simple analytic form. Once routing
for all regions and services has been computed, node
utilizations and the bound variable are updated ac-
cordingly, and the performance of the solution is eval-
uated.

To prevent excessive convergence to local minima,
diversification mechanisms are included. Pheromone
evaporation with parameter reduces the bias of his-
torical decisions over time [49]. Additionally, a min-
imum and maximum allowable pheromone value can
be enforced to keep probabilities from becoming de-
generate. If the diversity of constructed placements
within recent iterations falls below a certain thresh-
old, a partial pheromone reset is applied, reinitializing
a fraction of pheromone entries toward uniform values.

This encourages exploration of alternative placements
[50].

The termination condition of the algorithm can be
based on a fixed number of iterations, a maximum
computational budget, or convergence indicators such
as negligible improvement in the best observed bound
variable. Because fog environments may change over
time, with varying demands and node availability, the
algorithm can also be run in an online manner where
previously obtained pheromone patterns are used as a
warm-start for new demand configurations. In such
scenarios, pheromone is periodically damped to re-
flect changing capacity conditions, and ants construct
placements incrementally starting from the current
placement rather than from scratch.

An important implementation aspect is the map-
ping of the ant colony procedure onto actual fog or-
chestration mechanisms [51]. The algorithm provides
recommendations in the form of which services to place
on which nodes and how to route traffic. These rec-
ommendations must be translated into deployment
actions, such as instantiating containers, migrating
stateful services, and updating routing rules in edge
routers or software-defined networking controllers. To
limit churn, a change penalty can be integrated into
the pheromone-based evaluation, discouraging frequent
relocation of services unless the load-balancing gains
exceed a configurable threshold [52].
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Figure 6. Utilization comparison between baseline ACO and capacity-aware ACO: without capacities, some fog
nodes () reach full utilization (red bars), whereas capacity-aware pheromone guidance yields more
homogeneous load levels (blue bars). The dashed arrow highlights the effect of incorporating capacity

information into ant decisions.

6 EVALUATION METHODOLOGY AND NU-
MERICAL OBSERVATIONS

To assess the behavior of the capacity-aware ant colony
optimization scheme, it is useful to consider synthetic
fog topologies and workload scenarios that capture key
structural features. A common setup uses a multi-tier
topology with a set of access nodes connected to ag-
gregation nodes, which in turn connect to core nodes
and a remote cloud. Fog nodes with capacity values
are placed at different tiers to reflect heterogeneous re-
source availability. Access nodes typically have lower
capacity and are closer to end users, whereas aggrega-
tion and core nodes have higher capacities and more
centralized positions [53].

Service demand patterns are generated for several
services with distinct resource intensities and latency
sensitivities. For example, some services may repre-
sent real-time analytics with tight latency budgets
and moderate compute demand, while others may rep-
resent batch-type processing with relaxed latency re-
quirements and higher per-request resource consump-
tion. Access regions are associated with access nodes,
and demand rates are assigned following spatial distri-
butions that can be uniform, clustered, or skewed, to
emulate hot-spots and diurnal patterns [54].

Performance metrics concentrate on utilization dis-
tributions across fog nodes, maximum utilization, av-
erage path length or latency experienced by requests,
and algorithmic metrics such as convergence speed
and placement stability. The capacity-aware ant colony
algorithm is compared against baseline strategies such
as purely heuristic placements based on nearest nodes,

tative observations based on typical behavior observed
in such metaheuristic evaluations.

One general observation is that capacity-aware pheromone

scaling promotes a more even utilization profile by
steering ants away from highly loaded nodes already
during the construction phase [55]. In variants with-
out capacity awareness, ants often favor nodes that
are centrally located or have high heuristic visibility,
which can lead to repetitive selection of the same nodes
for many services, producing hot-spots. The capacity-
scaled pheromone reduces the attraction of such nodes
as their residual capacities diminish, encouraging ants
to explore alternative placements in less utilized re-
gions of the fog infrastructure.

Another observation concerns convergence patterns
[56]. The introduction of residual capacity factors
slows down the rate at which pheromone concentrates
on specific nodes because the effective pheromone de-
pends on both historical reinforcement and dynamic
residual capacity. This can increase exploration and
delay premature convergence, but it may also require
a careful tuning of the exponent and evaporation pa-
rameters to avoid diffusing search effort excessively.
Empirically, one expects to find that moderate values
of the exponent yield a balance between responsive-
ness to capacity changes and stability of accumulated
experience.

The maximum utilization metric typically decreases
during the early iterations as ants discover placements
that more effectively distribute load [57]. Over time,
improvements become smaller, indicating a saturation
of local search around a set of near-balanced place-

and ant colony variants without capacity-aware pheromonements. When compared to placement strategies that

scaling. Because concrete numerical values and plots
are not presented here, the discussion focuses on quali-

only minimize total latency without considering capac-
ity explicitly, the ant colony scheme tends to sacrifice
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a fraction of latency optimality in exchange for sub-
stantially lower maximum utilization. This reflects
the trade-off inherent in placing some service replicas
at nodes that are slightly further from demand regions
but have ample residual capacity [58].

In terms of routing, the greedy residual-capacity-
based assignment can approximate the optimal rout-
ing derived from solving the linear subproblem, par-
ticularly when capacity-volumes are large and utiliza-
tion gradients among nodes are clearly differentiated.
When capacities are tight, the exact linear routing
can yield better load balancing by fine-tuning the frac-
tions, whereas the heuristic approach may overshoot
some node capacities or leave small residual capacities
unused. A pragmatic design can mix both approaches,
using the heuristic for quick evaluations within ant ad-
ditions and solving the linear subproblem periodically
to refine selected placements.

Placement stability is another important aspect
[59]. The capacity-aware pheromone model tends to
stabilize around a core set of nodes that host repli-
cas of frequently used services, with occasional adjust-
ments when demand shifts or nodes approach high uti-
lization. Because pheromone encapsulates both histor-
ical quality and capacity effects, nodes that have con-
sistently provided balanced load distributions accu-
mulate relatively high pheromone, making them more
likely to remain in the placement. At the same time,
the residual capacity scaling ensures that if their load
grows excessively, their effective attraction decreases,
allowing other nodes to be selected [60].

7 DISCUSSION AND ALGORITHMIC CON-
SIDERATIONS

The development of capacity-aware pheromone mod-
els raises several design questions concerning the repre-
sentation of capacities, the granularity of pheromone
information, and the interplay with other optimiza-

tion objectives. One central question is whether pheromone

should reflect absolute residual capacity, relative uti-
lization, or a more elaborate measure of marginal cost
derived from the underlying linear model. Absolute
residual capacity is simple to compute and interpret,
but it favors nodes with large capacities regardless of
how heavily they are used. Relative utilization is scale-
free and highlights congestion, but may underrepre-
sent small nodes that are lightly loaded [61]. Marginal
cost measures incorporate both capacity and network
topology effects but require additional computation,
for example through dual variables or sensitivity anal-
ysis of the linear program.

The choice of granularity in pheromone storage
also impacts complexity and performance. Placement-
level pheromones indexed by service and node are com-
pact and directly support decisions about where to in-

stantiate services [62]. Routing-level pheromones in-
dexed by region, service, and node provide more pre-
cise guidance for traffic assignment but increase stor-
age requirements and may slow down convergence due
to a larger parameter space. A hierarchical approach
can be considered in which coarse-grained placement
pheromones drive the main structure of the placement,
while routing pheromones are maintained only for ser-
vices or nodes that consistently appear in the core
placement.

Another aspect is the interaction between the mini-
max load-balancing objective and other objectives such
as latency, energy, or reliability. In multi-objective
settings, ant colony optimization often uses weighted
sums or ranking-based reinforcement [63]. Capacity-
aware pheromones can be extended to encode multi-
objective trade-offs by blending marginal contributions
to different objectives into a single pheromone update.
For instance, the reinforcement increment might be
proportional to a convex combination of normalized
maximum utilization and average latency. This allows
ants to explore placements along a Pareto-like fron-
tier but introduces additional parameters that must
be tuned to represent operator preferences [64].

The linear model underlying the pheromone de-
sign assumes a static snapshot of demands and ca-
pacities. In dynamic scenarios, demands change over
time, and nodes may fail or join the infrastructure.
To adapt to such changes, one can incorporate time-
dependent pheromone decay or aging factors that re-
duce the influence of historical data as the environ-
ment shifts. Evaporation already provides a form of
forgetting, but additional decay mechanisms based on
detected changes in demand patterns can accelerate
adaptation [65]. For example, if a significant devi-
ation in demand volumes is detected, the algorithm
can trigger a temporary increase in evaporation rate
or a partial reinitialization of pheromones.

Scalability considerations emerge when the num-
ber of services and nodes grows. The computational
effort per iteration is roughly proportional to the num-
ber of ants times the cost of constructing and evaluat-
ing a placement [66]. The capacity-aware model adds
some overhead by computing residual capacities and
marginal costs during construction, but this overhead
is linear in the number of considered components. To
maintain tractability, it may be necessary to restrict
the candidate node set for each service to those within
a certain latency radius or to preselect a limited pool
of nodes with adequate capacity. Such preselection ef-
fectively reduces the search space and can be informed
by a preliminary solution of the linear model with re-
laxed constraints.

Finally, the integration with actual fog orchestra-
tion frameworks requires mapping the abstract place-
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ment decisions into concrete deployment actions with
consideration for migration costs and temporal con-
straints [67]. The linear model can be extended to
incorporate migration penalties by introducing binary
variables that represent changes relative to the current
placement and adding associated linear costs to the
objective. The ant colony procedure can approximate
these penalties by incorporating a bias against place-
ments that differ significantly from the current con-
figuration, for example by reducing pheromone values
on components not present in the existing placement.
This leads to an adaptive algorithm that balances the
benefit of improved load balancing against the over-
head of service migration [68].

8 CONCLUSION

This paper has examined the use of ant colony op-
timization with capacity-aware pheromone models for
load-balanced service placement in fog infrastructures.
A linear mixed-integer formulation of the placement
and routing problem was used to define capacity con-
straints, load-balancing objectives, and latency feasi-
bility. Within this framework, node utilizations and
an auxiliary bound variable represent the main load-
balancing indicators, and routing variables capture
how demands from access regions are assigned to ser-
vice instances across fog nodes.

Building on this model, a capacity-aware pheromone
scheme was proposed in which pheromone values asso-
ciated with service-node placements are modulated by
residual capacity and marginal load-balancing consid-
erations [69]. During solution construction, ants rely
on effective pheromone values that incorporate both
historical performance and current resource availabil-
ity, which encourages exploration of placements that
avoid overloading individual nodes. After construct-
ing placements and computing routing through exact
or heuristic methods, pheromone is updated in propor-
tion to achieved maximum utilization, biasing future
search toward more balanced configurations.

The resulting ant colony optimization procedure
introduces a dynamic coupling between resource ca-
pacities and search guidance, leading to placements
that distribute load more evenly compared to capacity-
agnostic approaches [70]. Qualitative evaluation on
representative fog topologies suggests that capacity-
aware pheromone scaling mitigates hot-spot formation
and improves utilization distributions, albeit with a
trade-off in convergence speed and potentially increased
computational effort due to the need to compute resid-
ual capacities and marginal costs. Algorithmic discus-

sions highlight several design choices regarding pheromone

granularity, objective integration, and scalability, as
well as practical considerations for incorporating mi-
gration costs and environmental dynamics.

Overall, the study illustrates how classical linear
models of resource allocation in fog infrastructures can
inform the design of metaheuristic search mechanisms
through capacity-aware pheromones. Further investi-
gations could explore alternative marginal cost estima-
tors, hybrid combinations with other metaheuristics,
and empirical evaluation on larger and more realistic
datasets, with attention to deployment constraints in
operational fog computing platforms [71].
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