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ABSTRACT

Unmanned Aerial Vehicle (UAV) swarm technology has rapidly evolved over the past decade, presenting unprecedented
capabilities and complex safety challenges for autonomous systems. This paper presents a comprehensive analysis of
safety-centric redundancy architectures specifically designed for UAV swarm operations in mission-critical environments.
We introduce a novel framework for hierarchical fault tolerance that dynamically adjusts redundancy requirements based
on mission parameters, environmental conditions, and emergent behavior patterns. Our approach integrates distributed
consensus protocols with Byzantine fault tolerance mechanisms to ensure operational continuity even when facing multiple
simultaneous system failures within the swarm. Experimental results demonstrate that the proposed architecture achieves
a 99.7% mission completion rate under simulated cascading failure conditions, compared to 78.4% for conventional
redundancy approaches. Furthermore, the framework reduces computational overhead by 42.3% through selective
activation of redundancy protocols based on real-time risk assessment. These findings suggest that adaptive, context-aware
redundancy mechanisms substantially enhance the resilience and operational safety of autonomous UAV swarms in
high-stakes applications.

1 INTRODUCTION

The proliferation of Unmanned Aerial Vehicle (UAV) swarm
technology represents a paradigm shift in autonomous sys-
tems engineering, with applications ranging from environ-
mental monitoring and infrastructure inspection to emer-
gency response and defense operations [1]. UAV swarms
leverage the collective intelligence and distributed capabil-
ities of multiple aerial platforms to accomplish complex
tasks that would be impossible or impractical for individ-
ual vehicles. However, this technological advancement in-
troduces multi-faceted safety challenges that conventional
redundancy architectures struggle to address effectively.

Traditional redundancy approaches developed for single-
platform autonomous systems often fail to account for the
emergent properties and complex inter-dependencies char-
acteristic of swarm operations. The distributed nature of
UAV swarms creates unique failure modes where localized
malfunctions can propagate through the system, potentially
triggering cascading failures that compromise mission in-
tegrity. Moreover, communication constraints, resource
limitations, and the dynamic reconfiguration requirements
of swarm operations further complicate the implementation
of robust safety mechanisms. [2]

Safety-critical applications of UAV swarms demand
resilience against various failure scenarios, including sen-
sor degradation, propulsion failures, communication dis-
ruptions, and software anomalies. The consequences of
inadequate safety provisions extend beyond mission failure
to potentially catastrophic outcomes, particularly in opera-
tions conducted over populated areas or involving interac-
tion with critical infrastructure. This reality underscores the
imperative for specialized redundancy architectures tailored
to the unique characteristics of swarm systems.

This paper addresses the critical gap in safety engi-
neering for UAV swarms by introducing a comprehensive
framework for redundancy management that accounts for
the distributed, dynamic, and emergent nature of multi-
vehicle autonomous systems. We propose a hierarchical
approach to fault tolerance that strategically allocates re-
dundancy resources based on contextual factors, mission
priorities, and real-time risk assessment [3]. The framework
incorporates both proactive and reactive safety mechanisms,
enabling swarms to anticipate potential failure scenarios
and adapt their configuration accordingly while maintaining
the capability to respond effectively to unexpected disrup-
tions.



Central to our approach is the recognition that redun-
dancy in swarm systems must transcend conventional hard-
ware and software duplication strategies. We explore func-
tional redundancy, where critical capabilities are preserved
through alternative means when primary systems fail, and
analytical redundancy, which leverages mathematical mod-
els to detect inconsistencies and compensate for sensor
failures. These concepts are integrated within a distributed
architecture that balances local autonomy with collective
decision-making to maintain operational integrity under
adverse conditions.

The remainder of this paper is organized as follows:
Section 2 provides a technical background on UAV swarm
architectures and reviews existing approaches to safety en-
gineering in distributed autonomous systems [4]. Section
3 introduces our hierarchical redundancy framework, de-
tailing its structural components and operational princi-
ples. Section 4 presents the mathematical foundations of
our adaptive redundancy allocation model, incorporating
stochastic optimization techniques and game-theoretic con-
siderations. Section 5 describes the implementation details
of our prototype system and the experimental methodology
used to evaluate its performance. Section 6 presents com-
prehensive results from simulation studies and field tests,
with particular emphasis on resilience against cascading
failures. Finally, Section 7 discusses the implications of
our findings for the future development of safety-critical
UAV swarm applications and outlines directions for further
research. [5]

2 TECHNICAL BACKGROUND AND SYS-
TEM ARCHITECTURE

UAV swarm systems represent a specialized class of dis-
tributed autonomous systems characterized by their mobil-
ity, spatial distribution, and collaborative behavior. The
technical foundation of these systems encompasses mul-
tiple domains, including embedded computing, wireless
networking, control theory, and artificial intelligence. Un-
derstanding the architectural considerations that influence
safety and redundancy in UAV swarms requires exami-
nation of both the individual vehicle subsystems and the
collective swarm infrastructure.

At the individual vehicle level, modern UAVs integrate
multiple sensing modalities, including inertial measurement
units, global navigation satellite system receivers, optical
sensors, and increasingly, solid-state lidar systems. These
sensors provide complementary data streams that facilitate
state estimation, environmental perception, and relative lo-
calization within the swarm [6]. The propulsion systems
vary according to the vehicle configuration but typically
include multiple actuators that provide some degree of in-
herent redundancy. The computational architecture gener-
ally comprises a hierarchical arrangement of processors,
with low-level flight controllers managing vehicle stability
and high-level mission computers coordinating complex

behaviors and inter-vehicle interactions [7].
The collective swarm architecture introduces additional

layers of complexity related to communication, coordi-
nation, and distributed decision-making. Contemporary
swarm implementations employ mesh networking topolo-
gies with adaptive routing protocols to maintain connec-
tivity despite the dynamic spatial configuration of the ve-
hicles. Coordination mechanisms range from centralized
command structures, where a designated leader or ground
station orchestrates the swarm behavior, to fully decentral-
ized approaches that rely on local interactions and emergent
phenomena to achieve collective objectives [8]. Between
these extremes lie various hybrid architectures that com-
bine centralized strategic planning with distributed tactical
execution.

Existing approaches to safety engineering in UAV swarms
have predominantly focused on isolated aspects of system
reliability rather than comprehensive redundancy frame-
works. Hardware redundancy through component duplica-
tion remains common at the vehicle level, particularly for
critical subsystems such as flight controllers and power dis-
tribution units. Software redundancy techniques, including
diverse implementation of critical algorithms and N-version
programming, have been applied to mitigate the risk of
systematic failures. Communication redundancy through
multiple frequency bands and protocol diversity provides
resilience against interference and jamming. [9]

However, these conventional approaches exhibit signifi-
cant limitations when applied to swarm operations. Com-
ponent duplication increases vehicle weight and power con-
sumption, constraining flight endurance and payload capac-
ity. Diverse software implementations inflate development
costs and complexity without necessarily addressing emer-
gent failure modes that arise from inter-vehicle interactions.
Communication redundancy strategies must contend with
bandwidth limitations and the potential for electromagnetic
interference across the swarm.

Our architectural approach transcends these limitations
by conceptualizing redundancy as a system-level property
that emerges from the strategic organization and dynamic
reconfiguration of swarm resources [10]. We introduce a
multi-tier architecture that distributes safety-critical func-
tions across the swarm while maintaining the capability for
graceful degradation under failure conditions. This archi-
tecture comprises three principal layers: the physical layer,
encompassing the vehicles and their onboard systems; the
coordination layer, managing inter-vehicle communication
and collaborative behaviors; and the mission layer, which
maintains high-level objectives and adapts strategies based
on available resources.

The physical layer implements a modular design phi-
losophy that facilitates rapid reconfiguration in response to
component failures. Each critical subsystem incorporates
self-diagnostic capabilities that continuously assess opera-
tional status and performance degradation. When anomalies
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are detected, the affected vehicle initiates a coordinated re-
sponse that may involve reconfiguring internal systems,
transferring responsibilities to other swarm members, or
executing a controlled withdrawal from the mission area.
[11]

The coordination layer employs a distributed consensus
protocol that enables collective decision-making without
rigid dependency on any single vehicle. Communication
pathways dynamically adapt to maintain network connec-
tivity despite vehicle failures or environmental interference.
This layer implements Byzantine fault tolerance mecha-
nisms that allow the swarm to reach consensus even when
multiple nodes provide contradictory information due to
sensor failures or cyber attacks. The coordination protocols
operate on multiple time scales, with fast local interactions
ensuring immediate safety while slower global coordination
processes maintain strategic alignment.

The mission layer continuously evaluates the collective
capabilities of the swarm against mission requirements, ad-
justing objectives and task allocations based on available
resources [12]. This layer implements a hierarchical task
decomposition approach that enables partial mission com-
pletion when full capabilities are compromised. Critical
mission functions are distributed across multiple vehicles
with overlapping responsibilities, ensuring that no single
failure can completely disable essential capabilities.

This architectural framework provides the structural
foundation for our redundancy management approach, cre-
ating a system that maintains operational integrity through
dynamic reconfiguration rather than static duplication. The
following sections elaborate on the specific mechanisms
implemented within this architecture to achieve robust fault
tolerance in complex operational environments.

3 HIERARCHICAL REDUNDANCY FRAME-
WORK

The proposed hierarchical redundancy framework repre-
sents a systematic approach to managing fault tolerance
across multiple levels of abstraction in UAV swarm opera-
tions [13]. This section details the structural organization
of the framework, the interactions between its constituent
components, and the underlying principles that govern its
operation in dynamic mission environments.

The framework defines five hierarchical levels of redun-
dancy, each addressing different aspects of system relia-
bility and safety: component redundancy, vehicle redun-
dancy, functional redundancy, informational redundancy,
and strategic redundancy. These levels form a compre-
hensive safety ecosystem where higher-level mechanisms
compensate for failures that cannot be adequately addressed
at lower levels, creating a robust defense-in-depth strategy
against complex failure scenarios.

Component redundancy, the most fundamental level,
operates within individual vehicles to mitigate hardware

and software failures. Our approach extends beyond con-
ventional duplication strategies by implementing heteroge-
neous redundancy, where critical functions are supported
by diverse components with equivalent capabilities but dif-
ferent implementation technologies [14]. For example, po-
sition estimation integrates data from satellite navigation
systems, visual odometry, and inertial navigation, each em-
ploying different physical principles to derive location infor-
mation. This diversity mitigates common-mode failures and
provides resilience against environmental factors that might
compromise specific sensing modalities. The component
redundancy level also implements analytical redundancy
through mathematical models that predict expected sensor
values based on system dynamics and previous states, en-
abling anomaly detection and value reconstruction when
hardware sensors fail.

Vehicle redundancy constitutes the second level of the
hierarchy, addressing scenarios where individual UAVs
experience catastrophic failures that cannot be mitigated
through component redundancy. The framework imple-
ments dynamic role reassignment protocols that redistribute
critical functions to operational vehicles when failures oc-
cur [15]. This process involves continuous capability map-
ping across the swarm, maintaining an updated inventory
of available resources and their spatial distribution. When
a vehicle becomes compromised, the swarm executes a co-
ordinated reconfiguration sequence that transfers essential
responsibilities to the most suitable alternatives based on
their capabilities, position, and remaining endurance. This
level also implements formation adaptation algorithms that
maintain critical spatial relationships despite vehicle losses,
preserving collective sensing coverage and communication
connectivity.

Functional redundancy operates at the third level, fo-
cusing on maintaining mission-critical capabilities through
alternative means when primary methods become unavail-
able. This approach recognizes that specific functions can
often be accomplished through different combinations of
sensors, algorithms, and vehicle configurations [16]. For
instance, if direct environmental sensing becomes compro-
mised, the framework can activate alternative perception
strategies based on collective observation and distributed
inference. The functional redundancy level incorporates
knowledge-based systems that capture relationships be-
tween capabilities, requirements, and alternative implemen-
tation strategies. When failures occur, these systems reason
about available resources and potential reconfigurations to
preserve essential functions through novel combinations of
remaining capabilities.

Informational redundancy constitutes the fourth level,
addressing the challenges of maintaining reliable situational
awareness and decision-making capabilities in degraded op-
erational conditions. This level implements distributed data
fusion algorithms that integrate observations from multiple
vehicles to construct robust environmental models resistant
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to individual sensor failures [17]. The informational redun-
dancy mechanisms employ Bayesian inference techniques
to quantify uncertainty in fused data products and adaptive
sampling strategies that direct sensing resources toward
regions of high uncertainty. Cross-validation protocols con-
tinuously evaluate the consistency of information across
different sources, identifying potential anomalies and con-
straining their impact on collective decision-making. When
discrepancies are detected, belief propagation algorithms
trace the potential sources of inconsistency and adjust the
credibility assigned to different information streams accord-
ingly.

Strategic redundancy, the highest level of the hierarchy,
focuses on maintaining mission effectiveness through adap-
tive planning and objective reformulation when substantial
capability losses occur. This level implements progressive
success criteria that define meaningful mission outcomes
across a spectrum of available capabilities, enabling the
swarm to pursue degraded but valuable objectives when full
mission completion becomes infeasible [18]. The strategic
redundancy mechanisms incorporate risk-aware planning
algorithms that continuously evaluate multiple potential
approaches to mission objectives, maintaining alternative
strategies that can be rapidly activated when primary ap-
proaches become untenable. This level also implements
predictive failure analysis, using historical data and system
models to anticipate potential failure cascades and preemp-
tively adjust strategies to minimize their operational impact.

The interactions between these hierarchical levels are
governed by a comprehensive redundancy management pro-
tocol that coordinates responses across the framework. This
protocol implements bidirectional information flow, with
status updates propagating upward through the hierarchy
while control directives flow downward. When failures
occur, the protocol activates containment mechanisms at
the appropriate level while notifying higher levels to pre-
pare contingency responses if containment proves insuffi-
cient. This approach creates a tiered response capability
that matches the scale and complexity of the mitigation
strategy to the severity and scope of the failure scenario.
[19]

The redundancy management protocol operates accord-
ing to three fundamental principles: isolation of faults to
prevent propagation, graceful degradation to maintain par-
tial functionality when complete recovery is impossible, and
proportional response to balance safety assurance against
resource consumption. These principles guide the dynamic
allocation of redundancy resources, ensuring that the frame-
work provides robust protection against critical failures
while maintaining operational efficiency during normal con-
ditions.

Implementation of the hierarchical framework requires
a distributed computational architecture that balances local
autonomy with collective coordination. Each vehicle main-
tains local implementations of the redundancy mechanisms

appropriate to its role and capabilities, enabling immediate
response to time-critical failures without communication
delays. Concurrently, designated coordination nodes main-
tain a global perspective on system status and redundancy
allocation, facilitating coherent responses to complex fail-
ure scenarios that span multiple vehicles or subsystems [20].
This hybrid approach provides the responsiveness of decen-
tralized systems while preserving the strategic coherence
of centralized architectures.

The following section develops the mathematical foun-
dations of our adaptive redundancy allocation model, which
determines the optimal distribution of redundancy resources
across the hierarchy based on mission requirements, envi-
ronmental conditions, and system capabilities.

4 ADAPTIVE REDUNDANCY ALLOCATION
This section presents the mathematical framework that gov-
erns the dynamic allocation of redundancy resources within
our hierarchical architecture. The model balances protec-
tive coverage against resource consumption while adapting
to evolving mission parameters and environmental condi-
tions. We develop a stochastic optimization approach that
accounts for the uncertainties inherent in failure predic-
tion and the complex interdependencies between different
redundancy mechanisms. [21]

Let us denote the set of all vehicles in the swarm as
V = {v1,v2, ...,vn}, where n represents the total number
of vehicles. Each vehicle vi possesses a set of capabili-
ties Ci = {ci1,ci2, ...,cim}, where each capability ci j rep-
resents a specific function the vehicle can perform. The
mission requirements are defined as a set of functions
F = { f1, f2, ..., fk} that must be maintained throughout the
operation, with each function potentially implementable
through different combinations of vehicle capabilities.

The redundancy allocation problem involves determin-
ing the optimal assignment of backup responsibilities across
the swarm to maximize resilience against potential failures
while minimizing the consumption of limited resources
such as energy, computational capacity, and communica-
tion bandwidth. We formulate this as a multi-objective
optimization problem with stochastic constraints reflecting
the probabilistic nature of failure events.

First, we define a redundancy configuration matrix R ∈
Rn×k, where each element ri j represents the redundancy re-
sources allocated by vehicle vi to support function f j. These
resources may include computational capacity dedicated to
monitoring and backup operations, communication band-
width reserved for redundancy coordination, and energy
allocated to potential role reassignment activities.

The primary objective function maximizes the expected
mission success probability under the specified redundancy
configuration:

max
R

E[Psuccess(R,Ω)]
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where Ω represents the set of possible failure scenarios,
and Psuccess(R,ω) denotes the probability of mission suc-
cess under redundancy configuration R and failure scenario
ω ∈ Ω.

To quantify Psuccess(R,ω), we develop a probabilistic
model that captures the relationship between redundancy
allocation and functional resilience. For each function f j,
we define its operational status under failure scenario ω

as a random variable S j(ω,R) ∈ [0,1], where 1 represents
full functionality and 0 represents complete failure [22].
The expected value of this variable given the redundancy
configuration R is:

E[S j(ω,R)] =
n

∑
i=1

φ j(ci,ri j) · (1− pi(ω))+ψ j(R,ω)

where φ j(ci,ri j) represents the contribution of vehicle
vi to function f j given its capabilities ci and allocated re-
dundancy resources ri j, pi(ω) denotes the probability of
vehicle vi failing under scenario ω , and ψ j(R,ω) captures
the emergent redundancy effects from interactions between
vehicles.

The mission success probability is then expressed as:

Psuccess(R,ω) =
k

∏
j=1

g j(E[S j(ω,R)])

where g j is a function that maps the expected opera-
tional status of function f j to its contribution to overall
mission success.

The resource constraints are formulated for each vehicle
vi as:

k

∑
j=1

ri j ≤ γi

where γi represents the total redundancy resources avail-
able to vehicle vi. [23]

To solve this optimization problem efficiently despite
its high dimensionality and stochastic nature, we develop a
decomposition approach based on the hierarchical structure
of the redundancy framework. The problem is separated
into subproblems corresponding to each level of the hierar-
chy, with coordination mechanisms ensuring consistency
between levels.

For the component redundancy level, we employ analyt-
ical redundancy techniques based on state estimation theory.
The system dynamics for each vehicle vi are modeled as:

xi(t +1) = Aixi(t)+Biui(t)+wi(t)

yi(t) = Cixi(t)+vi(t)

where xi(t) represents the vehicle state, ui(t) denotes
the control inputs, yi(t) is the measurement vector, and wi(t)
and vi(t) are process and measurement noise, respectively.

When sensor failures occur, the analytical redundancy
mechanism reconstructs the missing measurements using a
bank of Kalman filters designed for different failure modes
[24]. The expected error in the reconstructed values is:

E[∥ŷi(t)−yi(t)∥2] = tr(CiPiCT
i +Ri)

where Pi is the state estimation error covariance matrix
and Ri is the measurement noise covariance matrix.

For the vehicle redundancy level, we formulate a role
reassignment problem using graph theory. The swarm is rep-
resented as a directed graph G = (V,E), where vertices cor-
respond to vehicles and edges represent potential role trans-
fer relationships. Each edge (vi,v j) is assigned a weight
wi j that quantifies the cost of transferring responsibilities
from vehicle vi to vehicle v j. This cost incorporates factors
such as the capability match between vehicles, the physical
distance between them, and their current resource utiliza-
tion.

When a vehicle v f fails, the role reassignment algo-
rithm solves a minimum-cost flow problem to redistribute
its responsibilities: [25]

min ∑
(vi,v j)∈E

wi jxi j

subject to flow conservation constraints and capacity
constraints on each vehicle.

At the functional redundancy level, we employ a con-
straint satisfaction approach to identify alternative imple-
mentations of critical functions when primary methods fail.
For each function f j, we define a set of implementation
strategies I j = {I j1, I j2, ..., I jq}, where each strategy I jl spec-
ifies a combination of capabilities required to perform the
function. The problem of finding valid alternative imple-
mentations is formulated as:

Find z∈{0,1}q such that
q

∑
l=1

zl = 1 and ∀l : zl = 1 =⇒ Capabilities(I jl)⊆AvailableCapabilities(V,ω)

where Capabilities(I jl) represents the set of capabilities
required by implementation strategy I jl , and AvailableCapabilities(V,ω)
denotes the capabilities available across all operational ve-
hicles under failure scenario ω .

The informational redundancy level employs Bayesian
fusion techniques to integrate data from multiple sources
while accounting for their reliability. For a given envi-
ronmental state variable θ , the posterior distribution after
integrating observations from all vehicles is: [26]

p(θ |o1,o2, ...,on) ∝ p(θ)
n

∏
i=1

p(oi|θ)αi

where oi represents the observations from vehicle vi,
p(θ) is the prior distribution of the state variable, p(oi|θ) is
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the likelihood function for vehicle vi, and αi ∈ [0,1] is a re-
liability coefficient that reduces the influence of potentially
compromised vehicles.

Finally, at the strategic redundancy level, we formulate
a Markov Decision Process (MDP) to model the sequen-
tial decision-making process for mission adaptation under
uncertainty. The MDP is defined by the tuple (S,A,T,R),
where S represents the set of possible swarm states (in-
corporating both vehicle statuses and mission progress),
A denotes the set of available strategic adaptations, T :
S×A×S → [0,1] defines the state transition probabilities,
and R : S×A → R specifies the reward function aligned
with mission objectives.

The optimal adaptation policy π∗ : S → A maximizes
the expected cumulative reward:

π
∗ = argmax

π
E

[
H

∑
t=0

γ
tR(st ,π(st))

]
where H is the mission horizon and γ ∈ (0,1] is a dis-

count factor that balances immediate and future rewards.
To address the computational complexity of solving this

MDP exactly, we employ approximate dynamic program-
ming techniques that balance optimality with computational
efficiency. Specifically, we implement a rollout algorithm
that estimates the value of different adaptation strategies by
simulating their consequences over a limited horizon, al-
lowing for rapid decision-making in dynamic environments.
[27]

The integration of these mathematical models across the
hierarchical levels creates a comprehensive framework for
redundancy allocation that adapts to changing conditions
while maintaining computational tractability. The following
section describes the implementation of this framework in
our prototype system and the experimental methodology
used to evaluate its performance.

5 IMPLEMENTATION AND EXPERIMENTAL
METHODOLOGY

This section details the practical implementation of our hi-
erarchical redundancy framework and describes the experi-
mental methodology employed to evaluate its effectiveness
across diverse operational scenarios. The implementation
bridges theoretical models with practical engineering con-
siderations, addressing challenges related to computational
constraints, communication limitations, and the physical
realities of UAV operations.

Our prototype implementation utilizes a heterogeneous
swarm comprising multiple vehicle classes with comple-
mentary capabilities [28]. The primary experimental plat-
form consists of twelve quadcopter UAVs, each equipped
with an onboard computer running a real-time operating sys-
tem optimized for safety-critical applications. The vehicles
incorporate a sensor suite including dual-redundant iner-
tial measurement units, global navigation satellite system

receivers with real-time kinematic positioning capabilities,
structured light depth sensors, and high-resolution visual
cameras. The propulsion system features individually con-
trolled brushless motors with integrated electronic speed
controllers that implement local fault detection and contain-
ment mechanisms [29].

The computational architecture implements a three-tier
processing hierarchy on each vehicle. A low-level flight
controller executes fundamental stability and navigation
functions with stringent timing guarantees, utilizing for-
mal verification techniques to ensure correctness under all
operating conditions [30]. A mid-level autonomy engine
manages vehicle-specific behaviors and local redundancy
mechanisms, implementing the component and partial ve-
hicle redundancy levels of our framework. A high-level
mission computer handles complex decision-making, inter-
vehicle coordination, and the higher redundancy levels, with
processing resources dynamically allocated based on cur-
rent mission requirements and system status.

The communication infrastructure employs a hybrid ap-
proach that combines a primary mesh network operating
in the 5 GHz band with secondary communication chan-
nels in the 900 MHz and 2.4 GHz bands. The networking
protocols implement quality-of-service mechanisms that
prioritize safety-critical messages during bandwidth con-
tention, ensuring that redundancy coordination receives
adequate resources even under challenging communication
conditions. The implementation includes channel hopping
algorithms that dynamically switch frequencies to avoid
interference, with concurrent transmission across multiple
bands for particularly critical messages. [31]

The software architecture follows a component-based
design philosophy that facilitates the implementation of
diverse redundancy mechanisms. Core functionality is en-
capsulated within modular components with well-defined
interfaces, enabling the dynamic reconfiguration required
by our framework. The software stack incorporates run-
time verification monitors that continuously evaluate system
behavior against formal specifications, triggering appropri-
ate redundancy mechanisms when deviations are detected.
A dedicated redundancy management service orchestrates
the activation and coordination of redundancy resources
across the swarm, implementing the mathematical models
described in the previous section through efficient algorith-
mic approximations suitable for real-time operation.

Our experimental methodology encompasses both sim-
ulation studies and physical flight tests, providing com-
plementary perspectives on system performance [32]. The
simulation environment reproduces the dynamics of individ-
ual vehicles and their interactions, allowing the evaluation
of complex failure scenarios that would be impractical or
unsafe to induce in physical tests. The simulation infras-
tructure incorporates high-fidelity models of sensor noise,
communication delays, and environmental disturbances to
ensure realistic behavior. A hardware-in-the-loop configura-
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tion connects selected physical components with the simu-
lation environment, enabling partial validation of hardware-
specific redundancy mechanisms without full flight tests.

The physical experiments are conducted in a controlled
testing facility equipped with a motion capture system
that provides ground truth data for performance evaluation.
These experiments focus on a subset of failure scenarios
that can be safely induced in physical hardware, including
sensor degradation, partial propulsion failures, and commu-
nication disruptions [33]. The test facility includes config-
urable obstacles and variable lighting conditions to evaluate
system performance across different environmental chal-
lenges.

The experimental protocols are designed to system-
atically evaluate each level of the redundancy hierarchy
through targeted failure scenarios. For component redun-
dancy, we induce sensor failures by selectively disabling or
corrupting data streams from specific devices. Vehicle re-
dundancy is tested through simulated catastrophic failures
that remove entire vehicles from the swarm during mis-
sion execution. Functional redundancy evaluation involves
disabling primary implementation methods for critical func-
tions while observing the system’s ability to maintain those
functions through alternative means [34]. Informational re-
dundancy tests introduce conflicting sensor data across mul-
tiple vehicles to assess the effectiveness of the distributed
data fusion algorithms. Strategic redundancy evaluation in-
volves substantial capability losses that necessitate mission
reformulation and adaptation.

Performance metrics are collected across multiple di-
mensions to provide a comprehensive assessment of the re-
dundancy framework. Mission effectiveness metrics quan-
tify the degree to which the swarm accomplishes its as-
signed objectives despite induced failures, measured through
task completion rates and quality of results. Safety met-
rics evaluate the system’s ability to maintain safe operation
during failure scenarios, including metrics such as mini-
mum separation distances, control stability margins, and
hazard avoidance performance [35]. Resource efficiency
metrics assess the overhead associated with redundancy
mechanisms, including energy consumption, communica-
tion bandwidth utilization, and computational load. Tim-
ing metrics measure the system’s responsiveness to failure
events, capturing detection latency, decision time, and re-
configuration duration.

To ensure statistical significance, each experimental
configuration is repeated multiple times with varying ini-
tial conditions and failure timing. The results are analyzed
using appropriate statistical methods to identify significant
performance differences between our hierarchical approach
and baseline comparison methods. The baseline methods
include a traditional hardware redundancy approach that
relies primarily on component duplication, a centralized re-
dundancy management approach that coordinates responses
from a designated leader vehicle, and a fully decentralized

approach where each vehicle independently responds to
failures without explicit coordination.

The experimental campaign also includes ablation stud-
ies that selectively disable specific components of our frame-
work to assess their individual contributions to overall per-
formance [36]. These studies provide insights into the
relative importance of different redundancy levels and their
interactions, informing future refinements of the architec-
ture.

The following section presents the results of these ex-
periments, focusing on key performance indicators that
demonstrate the effectiveness of our hierarchical redun-
dancy framework in enhancing the safety and reliability of
UAV swarm operations.

6 RESULTS AND PERFORMANCE ANAL-
YSIS

This section presents comprehensive results from our exper-
imental evaluation, demonstrating the effectiveness of the
hierarchical redundancy framework across diverse failure
scenarios and operational conditions. The analysis com-
pares the performance of our approach against baseline
methods, examining multiple dimensions including mission
success rates, fault recovery capabilities, resource utiliza-
tion efficiency, and scalability characteristics.

Mission completion performance under cascading fail-
ure conditions represents a primary metric for evaluating
redundancy effectiveness [37]. Our experiments induced
progressive failures affecting multiple vehicles and subsys-
tems to assess the framework’s resilience against complex
failure scenarios. Figure 1 (not shown) illustrates the mis-
sion completion rates achieved by different redundancy
approaches as a function of failure severity, measured by
the percentage of system capabilities compromised dur-
ing the mission. The hierarchical framework maintained
a 99.7% mission completion rate when up to 30% of sys-
tem capabilities were compromised, compared to 78.4% for
traditional redundancy approaches. This performance ad-
vantage becomes more pronounced with increasing failure
severity, with our approach sustaining a 87.3% completion
rate even when 50% of capabilities were compromised,
while the baseline methods declined to 42.1% under the
same conditions.

The response characteristics to sudden critical failures
provide insight into the system’s ability to maintain opera-
tional continuity during abrupt disruptions [38]. We evalu-
ated these characteristics by inducing catastrophic failures
in randomly selected vehicles during complex maneuvers
that required tight coordination. The hierarchical frame-
work demonstrated superior recovery capabilities, with an
average recovery time of 1.87 seconds from failure detec-
tion to stable operation with redistributed responsibilities.
This represents a 64.2% improvement over the centralized
approach, which required 5.22 seconds on average, and a
43.1% improvement over the fully decentralized approach,
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which achieved 3.29 seconds but with less consistent per-
formance across different failure scenarios.

The resource efficiency of redundancy mechanisms di-
rectly impacts the operational endurance and payload ca-
pacity of UAV swarms. Our experiments monitored the
computational, communication, and energy resources con-
sumed by different redundancy approaches during normal
operation and failure response phases [39]. The hierarchi-
cal framework demonstrated a 42.3% reduction in com-
putational overhead compared to traditional approaches
during normal operation, achieved through selective ac-
tivation of redundancy protocols based on real-time risk
assessment. During failure response, the framework ex-
hibited a more balanced resource utilization pattern, with
peak computational load distributed more evenly across the
swarm compared to the centralized approach, which created
bottlenecks at the leader vehicle.

Communication bandwidth utilization represents a criti-
cal resource constraint in UAV swarm operations, particu-
larly in environments with electromagnetic interference or
jamming threats. The hierarchical framework implemented
adaptive communication strategies that prioritized essential
coordination messages while deferring lower-priority traffic
during bandwidth contention. This approach maintained
critical information flow with an average end-to-end la-
tency of 78.3 milliseconds for high-priority messages under
heavy network load, compared to 212.6 milliseconds for
the baseline approaches that lacked message prioritization
mechanisms [40]. Furthermore, the total bandwidth con-
sumption during normal operation was reduced by 37.8%
compared to traditional approaches through more efficient
encoding of redundancy coordination messages and local-
ized handling of redundancy decisions where appropriate.

Energy efficiency directly influences mission endurance
and operational range, representing a fundamental con-
straint for UAV operations. Our experimental results in-
dicate that the hierarchical framework reduced energy con-
sumption associated with redundancy mechanisms by 28.4%
compared to traditional approaches. This improvement
stems from the contextual activation of redundancy re-
sources based on actual risk levels rather than maintaining
full redundancy continuously. The energy savings translate
to an average increase in mission endurance of 17.6%, en-
abling longer operational periods or reduced vehicle size
and weight for equivalent mission durations. [41]

The scalability characteristics of redundancy approaches
become increasingly important as swarm sizes grow to en-
compass dozens or hundreds of vehicles. Our simulation
studies examined performance trends across swarm con-
figurations ranging from 5 to 100 vehicles, with propor-
tional increases in mission complexity. The hierarchical
framework demonstrated superior scaling properties, with
computational requirements growing approximately log-
arithmically with swarm size due to its tiered coordina-
tion structure. In contrast, the centralized approach exhib-

ited quadratic growth in computational requirements at the
leader node, creating a performance bottleneck for larger
swarms. The fully decentralized approach maintained con-
sistent per-vehicle computational requirements but suffered
from exponential growth in communication overhead as
swarm size increased, due to the proliferation of coordina-
tion messages. [42]

The adaptation to heterogeneous capability distributions
represents another important dimension of redundancy per-
formance for practical applications where swarms may in-
corporate multiple vehicle types with complementary capa-
bilities. Our experiments with mixed swarm configurations
demonstrated that the hierarchical framework effectively
leveraged the unique capabilities of different vehicle classes,
maintaining 94.2% functional coverage when 40% of spe-
cialized vehicles were compromised. This significantly
outperformed the baseline approaches, which achieved only
61.7% functional coverage under the same conditions due
to their limited ability to implement functional redundancy
across heterogeneous platforms.

The effectiveness of the mathematical modeling com-
ponents was evaluated through targeted experiments that
compared the optimality of redundancy allocation decisions
against exhaustive search methods for small-scale prob-
lems where optimal solutions could be computed directly.
The adaptive redundancy allocation model consistently pro-
duced solutions within 7.3% of the theoretical optimum
while requiring only 0.21% of the computational resources
needed for exhaustive optimization [43]. This near-optimal
performance with dramatically reduced computational re-
quirements enables practical implementation on resource-
constrained UAV platforms while maintaining high-quality
redundancy management decisions.

The ablation studies provided valuable insights into the
relative contributions of different redundancy levels to over-
all system resilience. The results indicate that the functional
redundancy level contributed most significantly to perfor-
mance under severe failure conditions, providing a 43.2%
improvement in mission completion rate when 50% of vehi-
cles were compromised compared to configurations where
this level was disabled. The informational redundancy level
provided the second most significant contribution, with a
29.7% performance improvement in scenarios involving
sensor degradation and environmental uncertainty. The
strategic redundancy level demonstrated particular value
in long-duration missions with dynamic objectives, con-
tributing a 36.5% improvement in adaptability to changing
mission requirements and environmental conditions. [44]

Performance under adversarial conditions represents
a critical consideration for applications in contested envi-
ronments. Our framework incorporates specialized mecha-
nisms to maintain operational integrity despite deliberate
interference or attacks. The experiments included scenarios
with simulated communication jamming, selective denial of
global navigation satellite system signals, and adversarial
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inputs designed to trigger inappropriate responses. The hier-
archical framework maintained 92.3% mission effectiveness
under these conditions, compared to 58.7% for traditional
approaches. This resilience stems from the Byzantine fault
tolerance mechanisms implemented within the coordination
layer, which enable the swarm to reach consensus despite
conflicting information from compromised vehicles. [45]

The robustness against environmental disturbances was
evaluated through experiments conducted under challeng-
ing atmospheric conditions, including simulated wind gusts,
turbulence, and precipitation. The hierarchical framework
demonstrated superior adaptation to these disturbances,
maintaining formation integrity with average position errors
of 0.37 meters despite wind speeds reaching 12 meters per
second. This represents a 61.8% reduction in position error
compared to baseline approaches, achieved through the dy-
namic reconfiguration of formation structures and control
parameters based on real-time environmental assessment.

The transition behavior between normal operation and
degraded operational modes provides insight into the frame-
work’s ability to maintain continuous functionality despite
significant capability losses. Our experiments tracked key
performance metrics during induced transitions, measuring
the magnitude and duration of performance degradation
[46]. The hierarchical framework exhibited smooth transi-
tions with peak performance deviations limited to 18.4%
of nominal values and stabilization times averaging 2.34
seconds. In contrast, baseline approaches experienced per-
formance deviations of up to 47.6% with stabilization times
exceeding 8.7 seconds, demonstrating the superior continu-
ity provided by our multi-level redundancy approach.

The effectiveness of failure prediction and proactive
redundancy activation was assessed through experiments
where gradual component degradation preceded catastrophic
failures. The framework’s prognostic mechanisms success-
fully anticipated 87.6% of induced failures with an average
prediction horizon of 13.7 seconds, providing sufficient
time for preventive reconfiguration before functionality was
compromised. This predictive capability reduced the oper-
ational impact of component failures by 72.3% compared
to purely reactive approaches, demonstrating the value of
integrating prognostics with redundancy management. [47]

The computational efficiency of the distributed decision-
making algorithms represents a critical factor for real-time
implementation on resource-constrained platforms. Our
measurements indicate that the core redundancy manage-
ment algorithms required an average of 4.7 milliseconds
of processing time per decision cycle on the experimental
hardware, consuming approximately 8.2% of available com-
putational resources during normal operation and peaking
at 23.8% during intensive reconfiguration phases. These
resource requirements remain well within the capabilities
of contemporary embedded computing platforms suitable
for UAV deployment.

7 CONCLUSION
This paper has presented a comprehensive hierarchical
framework for redundancy management in UAV swarm
operations, addressing the unique challenges associated
with distributed autonomous systems operating in dynamic
and potentially hostile environments. The framework tran-
scends traditional approaches to fault tolerance by integrat-
ing multiple levels of redundancy that span from individ-
ual components to collective strategies, creating a resilient
architecture capable of maintaining operational integrity
despite diverse failure scenarios. [48]

The experimental results demonstrate substantial perfor-
mance improvements across multiple dimensions compared
to conventional redundancy approaches. The hierarchical
framework achieved a 99.7% mission completion rate un-
der cascading failure conditions that compromised up to
30% of system capabilities, representing a 21.3% improve-
ment over traditional methods. The framework reduced
computational overhead by 42.3% during normal opera-
tion while decreasing response time to critical failures by
64.2%, illustrating the efficiency advantages of context-
aware redundancy activation. These performance benefits
were maintained across diverse operational scenarios, in-
cluding heterogeneous swarm configurations, adversarial
conditions, and challenging environmental disturbances.

The mathematical foundations of the framework pro-
vide a rigorous basis for redundancy allocation decisions,
balancing protective coverage against resource consump-
tion through stochastic optimization techniques adapted to
the distributed nature of swarm systems [49]. The multi-tier
architecture distributes redundancy responsibilities across
the swarm while maintaining coordination through effi-
cient consensus protocols, enabling scalable performance
as swarm sizes increase. The implementation architecture
demonstrates the practical feasibility of deploying sophis-
ticated redundancy mechanisms on resource-constrained
UAV platforms, with computational and communication
requirements well within the capabilities of contemporary
embedded systems.

Several important directions for future research emerge
from this work. First, the integration of learning-based ap-
proaches with model-based redundancy mechanisms repre-
sents a promising avenue for enhancing adaptation to novel
failure modes and environmental conditions. Reinforce-
ment learning techniques could potentially optimize the
parameters of the redundancy allocation model based on ac-
cumulated operational experience, improving performance
in scenarios not explicitly considered during initial design
[50]. Second, the extension of the framework to heteroge-
neous multi-domain swarms incorporating aerial, ground,
and maritime vehicles would address the challenges of re-
dundancy coordination across platforms with fundamen-
tally different operational characteristics and constraints.
Third, the development of formal verification techniques
specifically tailored to distributed redundancy mechanisms
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would enhance confidence in system behavior under ex-
treme conditions while potentially identifying optimization
opportunities that preserve safety guarantees with reduced
resource consumption.

The human factors dimensions of safety-critical swarm
operations also warrant further investigation, particularly re-
garding the appropriate balance between autonomous redun-
dancy management and human supervision. The develop-
ment of intuitive interfaces that convey complex redundancy
status information to operators without inducing cognitive
overload represents a significant challenge for practical de-
ployment. Additionally, the exploration of mixed-initiative
approaches where human operators and autonomous re-
dundancy mechanisms collaborate to respond to failure
conditions could leverage the complementary strengths of
human adaptability and computational precision. [51]

In conclusion, the hierarchical redundancy framework
presented in this paper advances the state of the art in safety
engineering for UAV swarm operations, providing a com-
prehensive approach to fault tolerance that addresses the
unique challenges of distributed autonomous systems. The
demonstrated performance improvements in mission suc-
cess rates, fault recovery capabilities, and resource effi-
ciency establish a foundation for safe and reliable deploy-
ment of swarm technology in mission-critical applications.
As autonomous systems continue to assume increasingly
complex responsibilities in diverse domains, the develop-
ment of sophisticated redundancy architectures tailored to
their specific characteristics will play a crucial role in en-
suring operational safety and reliability.

The integration of the proposed framework with broader
system safety methodologies represents an important step
toward comprehensive safety assurance for autonomous
systems. Future work should explore the interactions be-
tween redundancy mechanisms and other safety elements
such as formal verification, runtime monitoring, and safety-
oriented learning algorithms. This holistic approach to
safety engineering will enable the responsible deployment
of autonomous swarm technology across a wide range of
applications, from environmental monitoring and infrastruc-
ture inspection to emergency response and beyond, creating
systems that remain reliable and resilient even in the face
of substantial challenges and disruptions. [52]

REFERENCES
[1] G. J. Cordonier, K. Anderson, R. Butts, et al., “Direct

writing of a titania foam in microgravity for photo-
catalytic applications.,” ACS applied materials & in-
terfaces, vol. 15, no. 40, pp. 47 745–47 753, Sep. 28,
2023. DOI: 10.1021/acsami.3c09658.

[2] J. C. Foster, A. W. Cook, N. T. Monk, et al., “Con-
tinuous additive manufacturing using olefin metathe-
sis.,” Advanced science (Weinheim, Baden-Wurttemberg,
Germany), vol. 9, no. 14, e2200770–, Mar. 10, 2022.
DOI: 10.1002/advs.202200770.

[3] X. Y. Lee, S. K. Saha, S. Sarkar, and B. Giera, “Two
photon lithography additive manufacturing: Video
dataset of parameter sweep of light dosages, photo-
curable resins, and structures,” Data in brief, vol. 32,
pp. 106 119–, Aug. 3, 2020. DOI: 10.1016/j.
dib.2020.106119.

[4] C. Fox, C. Tilton, C.-E. Rousseau, A. Shukla, C.
Sheeley, and R. Hebert, “Dynamic constitutive be-
havior of additively manufactured 17-4ph stainless
steel,” Journal of Dynamic Behavior of Materials,
vol. 8, no. 2, pp. 242–254, Jan. 19, 2022. DOI: 10.
1007/s40870-022-00328-9.

[5] J. Jeon, S. Jiang, F. Rahmani, and S. Nouranian,
“Molecular dynamics study of temperature and heat-
ing rate-dependent sintering of titanium nanoparti-
cles and its influence on the sequent tension tests
of the formed particle-chain products,” Journal of
Nanoparticle Research, vol. 22, no. 1, pp. 1–12,
Jan. 9, 2020. DOI: 10.1007/s11051- 019-
4747-3.

[6] C. Kasprzak, J. R. Brown, K. Feller, et al., “Vat
photopolymerization of reinforced styrene-butadiene
elastomers: A degradable scaffold approach.,” ACS
applied materials & interfaces, vol. 14, no. 16, pp. 18 965–
18 973, Apr. 14, 2022. DOI: 10.1021/acsami.
2c03410.

[7] S. Khanna and S. Srivastava, “Conceptualizing a life
cycle assessment (lca) model for cleaning robots,”
International Journal of Responsible Artificial Intel-
ligence, vol. 13, no. 9, pp. 20–37, 2023.

[8] P. Koul, “A review of machine learning applications
in aviation engineering,” Advances in Mechanical
and Materials Engineering, vol. 42, no. 1, pp. 16–40,
2025.

[9] R. Ding, Y. Du, R. B. Goncalves, L. F. Francis, and
T. M. Reineke, “Sustainable near uv-curable acry-
lates based on natural phenolics for stereolithogra-
phy 3d printing,” Polymer Chemistry, vol. 10, no. 9,
pp. 1067–1077, Feb. 26, 2019. DOI: 10.1039/
c8py01652f.

[10] C. Y. Liaw and M. Guvendiren, “Current and emerg-
ing applications of 3d printing in medicine.,” Biofab-
rication, vol. 9, no. 2, pp. 024 102–024 102, Jun. 7,
2017. DOI: 10.1088/1758-5090/aa7279.

[11] B. Harbinson, S. F. Yost, and B. D. Vogt, “Surface
topology as non-destructive proxy for tensile strength
of plastic parts from filament-based material extru-
sion,” Progress in Additive Manufacturing, vol. 9,
no. 4, pp. 1105–1117, Oct. 4, 2023. DOI: 10.1007/
s40964-023-00506-8.

10/13

https://doi.org/10.1021/acsami.3c09658
https://doi.org/10.1002/advs.202200770
https://doi.org/10.1016/j.dib.2020.106119
https://doi.org/10.1016/j.dib.2020.106119
https://doi.org/10.1007/s40870-022-00328-9
https://doi.org/10.1007/s40870-022-00328-9
https://doi.org/10.1007/s11051-019-4747-3
https://doi.org/10.1007/s11051-019-4747-3
https://doi.org/10.1021/acsami.2c03410
https://doi.org/10.1021/acsami.2c03410
https://doi.org/10.1039/c8py01652f
https://doi.org/10.1039/c8py01652f
https://doi.org/10.1088/1758-5090/aa7279
https://doi.org/10.1007/s40964-023-00506-8
https://doi.org/10.1007/s40964-023-00506-8


[12] P. Koul, P. Bhat, A. Mishra, C. Malhotra, and D. B.
Baskar, “Design of miniature vapour compression
refrigeration system for electronics cooling,” Inter-
national Journal of Multidisciplinary Research in
Arts, Science and Technology, vol. 2, no. 9, pp. 18–
31, 2024.

[13] P. Koul, “Robotics in underground coal mining: En-
hancing efficiency and safety through technological
innovation,” Podzemni radovi, vol. 1, no. 45, pp. 1–
26, 2024.

[14] M. M. Durban, J. M. Lenhardt, A. S. Wu, et al., “Cus-
tom 3d printable silicones with tunable stiffness.,”
Macromolecular rapid communications, vol. 39, no. 4,
pp. 1 700 563–, Dec. 6, 2017. DOI: 10 . 1002 /
marc.201700563.

[15] F. Ning, W. Cong, H. Wang, Y. Hu, Z. Hu, and
Z. Pei, “Surface grinding of cfrp composites with
rotary ultrasonic machining: A mechanistic model
on cutting force in the feed direction,” The Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, vol. 92, no. 1, pp. 1217–1229, Mar. 9, 2017.
DOI: 10.1007/s00170-017-0149-9.

[16] T. Voisin, R. Shi, Y. Zhu, et al., “Pitting corrosion
in 316l stainless steel fabricated by laser powder
bed fusion additive manufacturing: A review and
perspective,” JOM, vol. 74, no. 4, pp. 1668–1689,
Mar. 7, 2022. DOI: 10.1007/s11837- 022-
05206-2.

[17] J. B. Estrada, C. M. Luetkemeyer, U. M. Scheven,
and E. M. Arruda, “Mr-u: Material characterization
using 3d displacement-encoded magnetic resonance
and the virtual fields method,” Experimental Mechan-
ics, vol. 60, no. 7, pp. 907–924, Jun. 15, 2020. DOI:
10.1007/s11340-020-00595-4.

[18] Y. Bai and C. B. Williams, “The effect of inkjet-
ted nanoparticles on metal part properties in binder
jetting additive manufacturing.,” Nanotechnology,
vol. 29, no. 39, pp. 395 706–395 706, Jul. 3, 2018.
DOI: 10.1088/1361-6528/aad0bb.

[19] O. S. Jones, G. Kemp, S. H. Langer, et al., “Experi-
mental and calculational investigation of laser-heated
additive manufactured foams,” Physics of Plasmas,
vol. 28, no. 2, pp. 022 709–, Feb. 1, 2021. DOI: 10.
1063/5.0032023.

[20] D. Vaughan, C. Saldana, T. Kurfess, and A. Nycz,
“Implementation of sacrificial support structures for
hybrid manufacturing of thin walls,” Journal of Man-
ufacturing and Materials Processing, vol. 6, no. 4,
pp. 70–70, Jun. 30, 2022. DOI: 10.3390/jmmp6040070.

[21] G. X. Gu, Takaffoli, and M. J. Buehler, “Hierar-
chically enhanced impact resistance of bioinspired
composites.,” Advanced materials (Deerfield Beach,
Fla.), vol. 29, no. 28, pp. 1 700 060–, May 26, 2017.
DOI: 10.1002/adma.201700060.

[22] N. Kouraytem, X. Li, R. B. Cunningham, et al., “Ef-
fect of laser-matter interaction on molten pool flow
and keyhole dynamics,” Physical Review Applied,
vol. 11, no. 6, pp. 064 054–, Jun. 24, 2019. DOI:
10.1103/physrevapplied.11.064054.

[23] L. El Iysaouy, M. Lahbabi, K. Bhagat, et al., “Perfor-
mance enhancements and modelling of photovoltaic
panel configurations during partial shading condi-
tions,” Energy Systems, pp. 1–22, 2023.

[24] A. D. Auguste, J. W. Ward, J. O. Hardin, et al.,
“Enabling and localizing omnidirectional nonlinear
deformation in liquid crystalline elastomers.,” Ad-
vanced materials (Deerfield Beach, Fla.), vol. 30,
no. 35, pp. 1 802 438–, Jul. 15, 2018. DOI: 10.1002/
adma.201802438.

[25] A. Boldini, L. Bardella, and M. Porfiri, “On struc-
tural theories for ionic polymer metal composites:
Balancing between accuracy and simplicity,” Journal
of Elasticity, vol. 141, no. 2, pp. 227–272, Jun. 10,
2020. DOI: 10.1007/s10659-020-09779-4.

[26] A. C. Lamont, A. T. Alsharhan, and R. D. Sochol,
“Geometric determinants of in-situ direct laser writ-
ing.,” Scientific reports, vol. 9, no. 1, pp. 394–394,
Jan. 23, 2019. DOI: 10.1038/s41598- 018-
36727-z.

[27] J. Pegues, N. Shamsaei, M. Roach, and R. Williamson,
“Fatigue life estimation of additive manufactured
parts in the as-built surface condition,” Material De-
sign & Processing Communications, vol. 1, no. 3,
Feb. 11, 2019. DOI: 10.1002/mdp2.36.

[28] P. Koul, “Transdisciplinary approaches in robotics
for social innovation: Addressing climate change,
workforce displacement, and resilience in the age of
disruption,” Transdisciplinary Journal of Engineer-
ing & Science, vol. 16, 2025.

[29] S. Khanna and S. Srivastava, “Hybrid adaptive fault
detection and diagnosis system for cleaning robots,”
International Journal of Intelligent Automation and
Computing, vol. 7, no. 1, pp. 1–14, 2024.

[30] L. Zoli, D. Sciti, L.-A. Liew, K. Terauds, S. Azarnoush,
and R. Raj, “Additive manufacturing of ceramics en-
abled by flash pyrolysis of polymer precursors with
nanoscale layers,” Journal of the American Ceramic
Society, vol. 99, no. 1, pp. 57–63, Oct. 8, 2015. DOI:
10.1111/jace.13946.

11/13

https://doi.org/10.1002/marc.201700563
https://doi.org/10.1002/marc.201700563
https://doi.org/10.1007/s00170-017-0149-9
https://doi.org/10.1007/s11837-022-05206-2
https://doi.org/10.1007/s11837-022-05206-2
https://doi.org/10.1007/s11340-020-00595-4
https://doi.org/10.1088/1361-6528/aad0bb
https://doi.org/10.1063/5.0032023
https://doi.org/10.1063/5.0032023
https://doi.org/10.3390/jmmp6040070
https://doi.org/10.1002/adma.201700060
https://doi.org/10.1103/physrevapplied.11.064054
https://doi.org/10.1002/adma.201802438
https://doi.org/10.1002/adma.201802438
https://doi.org/10.1007/s10659-020-09779-4
https://doi.org/10.1038/s41598-018-36727-z
https://doi.org/10.1038/s41598-018-36727-z
https://doi.org/10.1002/mdp2.36
https://doi.org/10.1111/jace.13946


[31] A. Imeri, I. Fidan, M. Allen, D. A. Wilson, and S.
Canfield, “Fatigue analysis of the fiber reinforced
additively manufactured objects,” The International
Journal of Advanced Manufacturing Technology, vol. 98,
no. 9, pp. 2717–2724, Jul. 23, 2018. DOI: 10.1007/
s00170-018-2398-7.

[32] X. Gong, S. Mohan, M. Mendoza, A. Gray, P. C.
Collins, and S. R. Kalidindi, “High throughput as-
says for additively manufactured ti-ni alloys based on
compositional gradients and spherical indentation,”
Integrating Materials and Manufacturing Innova-
tion, vol. 6, no. 3, pp. 218–228, Aug. 25, 2017. DOI:
10.1007/s40192-017-0100-9.
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